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Abstract High-density rearing conditions for the

mass-production of biological control agents are

known to affect individual quality and performance.

However, complex phenotypic traits like dispersal

behaviour and their response to rearing conditions are

rarely investigated, although they are likely to affect

directly biocontrol efficiency in the field. In this study,

we develop an original experimental design to eval-

uate two complementary components of dispersal

behaviour in Trichogramma. Then, we investigate

how these components respond to variations in rearing

density, and their correlation with traits related to

parasitoid fitness. We find that under high-density

conditions, a large proportion of individuals display

reduced mobility and fecundity, indicative of a lower-

quality phenotype. These interactive effects between

dispersal performance and individual fitness highlight

the need to develop integrative experimental designs

to easily quantify complex phenotypic traits related to

the field performance of biological control agents.

Keywords Phenotypic plasticity � Condition-
dependence � Industrial rearing � Ambulatory

dispersal � Aerial dispersal � Trichogramma

Introduction

One of the first steps in the development of a biological

control programme is often the screening of several

populations of candidate agents for traits related to

host control efficiency, like foraging behaviour, ther-

mal tolerance or realized fecundity (Hopper et al.

1993; Ruberson et al. 1999; Coupland and Baker

2009). Then, these traits and others related to mass-

production (e.g., development on factitious hosts, sex-

ratio, pesticide resistance, diapause or resistance to

storage procedure) can eventually be further enhanced

through artificial selection (Rosenheim and Hoy 1988;

Hopper et al. 1993; Heilmann et al. 1994).

In addition to such genetic differences in life-

history traits between individuals or populations, lab-

rearing conditions are also known to induce non-

genetic phenotypic changes that might strongly impact

individual performance in the short-term (van Len-

teren et al. 2003; Luczynski et al. 2007; Pereira et al.
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2007). Phenotypic plasticity refers to the capacity of a

given genotype to exhibit a range of phenotypes in

response to variation in the environment (Pigliucci

et al. 2006). In particular, processes like diapause

induction, host recognition or habitat choice, that can

all deeply affect the performance of a biological

control agent in the field, are known to be sensitive to

environmental influences (Rietdorf and Steidle 2002;

Davis and Stamps 2004; Bean et al. 2007).

Classically, phenotypic plasticity is expected to

occur during development, as this is the time during

which most of the individual phenotype is determined,

and development is known to be particularly suscep-

tible to deviating perturbations and environmental

influences in general (Whitman and Agrawal 2009;

Fusco and Minelli 2010). Maternal effects can also be

considered as a special case of phenotypic plasticity,

where the individual phenotype is affected by the

environment experienced by its mother (e.g., through

reproductive allocation or more directly through

cytoplasmic factors, Mousseau and Fox 1998).

For adaptive plasticity, early determinismprovides the

double advantage of (i) producing phenotypes that are

pre-adapted to their future environment, and (ii) inducing

complex, coordinated ontogenic shifts that affect multi-

ple traits (Pigliucci and Preston 2004; Shingleton et al.

2007). For hymenopteran parasitoids used as biological

control agents, developmental plasticity is expected to

strongly affect performance in the field, as environmental

conditions experienced during larval development (i.e.,

laboratory environment) will be dramatically different

from those experienced during adult life, the latter being

the determinant life stage for biocontrol efficiency.

Indeed, many studies have documented strong down-

stream effects of early environment (e.g. host species,

host condition, temperature) on adult phenotype and

fitness in parasitoids (Boivin 2010; Cicero et al. 2011;

Mawela et al. 2013).

Among the factors most likely to impact para-

sitoid’s phenotype, density is a crucial one as it is

directly related to mass-rearing productivity and thus

should be maximized for commercial purposes. High-

density conditions are likely to deeply affect individ-

ual phenotype, the most frequent effects being a

reduction in size, a decreased emergence rate and a

male-biased sex ratio (van Lenteren 2003; González

et al. 2007; Tormos et al. 2012). Such effects are

expected not only in gregarious but also in solitary

parasitoids, where female reproductive allocation or

the frequency of superparasitism can depend on local

density (Wylie 1965; van Baaren et al. 1995). Adult

size is a strong determinant of several performance

traits in insects, including female fecundity (Boivin

2010), while emergence rate and sex ratio directly

affect parasitism pressure and thus the potential for

host control. Therefore, the effects of rearing density

on these traits are usually investigated quite early

when setting up an industrial production of para-

sitoids, and rearing density is then chosen to optimize

the trade-off between parasitoid quantity and quality

(i.e., phenotype, Nunney 2003).

In contrast, many other traits likely to impact

efficiency in the field but less easily measured in the

laboratory may also be plastically affected by density

conditions during development. Among these traits,

dispersal is likely to be a key determinant of biological

control efficiency in the field (Heimpel and Asplen

2011), in particular for augmentative releases. Indeed,

low dispersal rates will result in highly heterogeneous

parasitism rates over space (e.g., Greatti and Zandi-

giacomo 1995; McDougall and Mills 1997; Fournier

and Boivin 2000), while excessive dispersal may lead

to significant emigration away from the target area

(Bellamy et al. 2004; Collier and van Steenwyk 2004;

Pineda and Marcos-Garcı́a 2008). Therefore, the level

of host control achieved in the field is likely to be

sensitive to individual dispersal rate, and any mech-

anism that allows the manipulation of the dispersal

patterns of natural enemies could be used to increase

biological control efficiency in the field depending on

the ecological context (e.g., level of landscape frag-

mentation, Heimpel and Asplen 2011).

Dispersal is known to be a complex trait open to the

influence of many external and internal factors

(Clobert et al. 2001; Bowler and Benton 2005), and

density-dependent dispersal responses have been

reported in many taxa, including insects (Harrison

1980; Zera and Denno 1997). Rearing density during

development might thus be a convenient trigger to

adjust the dispersal rate of parasitoids at will to

optimize biocontrol efficiency. However, density-

dependent dispersal can be either positive (i.e., higher

dispersal rate in more crowded populations) or nega-

tive, depending on the selective forces acting on

dispersal evolution in a given population or species

(Bowler and Benton 2005; Matthysen 2005). In

addition, dispersal abilities are usually determined by

a large set of correlated traits (e.g., morphological,
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physiological and behavioural) so that density-depen-

dent dispersal responses are likely to affect global

population performance. Dispersal is often considered

a costly behaviour (Ronce 2007), both because of

increased mortality risk and high energy costs associ-

ated with mobility (e.g., flight-fecundity trade-offs in

insects, Zera and Denno 1997; Roff and Fairbairn

2001), so that individuals in higher-dispersing popu-

lations might have lower average fecundity or long-

evity. Alternatively, when dispersal is condition-

dependent and requires a minimum level of energetic

reserves (Ims and Hjermann 2001; Chaput-Bardy et al.

2010), individuals from higher-dispersing populations

should be on average in better physical condition and

achieve higher fitness.

In that respect, assessing whether the dispersal of

natural enemies might be efficiently manipulated

through phenotypic plasticity by tuning the level of

rearing density during larval development requires to

determine: (i) the nature of the density-dependent

dispersal response (i.e., positive or negative), and (ii)

its consequences on other performance related-traits.

We specifically addressed these points by investigat-

ing the impact of rearing density on dispersal rate,

female fecundity and longevity for three different

species of Trichogramma that are commonly used as

biological control agents against several Lepidopteran

pests. Parasitism rate from Trichogramma parasitoids

in the field has been found previously to be sensitive to

dispersal distance (Fournier and Boivin 2000; Wright

et al. 2001; Kölliker-Ott et al. 2004), so that the

efficiency of augmentative releases might directly

benefit from the control of plastic dispersal responses

during the production process. In addition, Tri-

chogramma have consistently been used as model

species in behavioural ecology (Wajnberg et al. 2000;

Boivin et al. 2004; Huigens et al. 2010; Kruidhof et al.

2012) and population dynamics (Vercken et al. 2013,

2015), and as such represent a particularly relevant

focus group for the study of ecological and evolution-

ary processes related to biological control.

Materials and methods

Biological model

We used three different species of Trichogramma

wasps (Hymenoptera: Trichogrammatidae) as model

species: T. achaeae, T. chilonis and T. euproctidis.

Trichogramma are minute solitary parasitoids of

Lepidopteran eggs widely used as biological control

agents against noxious species (Smith 1996). The

species T. achaeae, T. chilonis and T. euproctidis are

respectively released against the tomato leafminer

Tuta absoluta (Chailleux et al. 2012), the sugar cane

spotted borer Chilo sacchariphagus (Tabone et al.

2010), and for the integrated protection of several

stored products (Schöller 2010). The location and date

of sampling of the different species are given in

Table 1. While some strains and species of Tri-

chogramma can be thelytokous (Stouthamer 2003),

the species used in our study are all arrhenotokous, i.e.

fertilized and unfertilized eggs respectively develop

into diploid females and haploid males (Quicke 1997).

Rearing conditions

The three species were maintained in the laboratory on

the factitious host Ephestia kuehniella (flour moth).

Host eggs were irradiated previous to parasitoid

exposure, thus preventing their development while

maintaining their suitability for the Trichogramma.

Temperature and light conditions were set on a cycle

of 16 h daylight (25 �C)/8 h dark (20 �C) with

constant 70 % RH. Generation times for each species

under these conditions are given in Table 1.

Laboratory populations were grown in glass tubes

(diameter 10 mm, length 80 mm). At the beginning of

the experiment, each population was initiated with five

mated female parasitoids, and hosts were provided

following two density treatments: 50 host eggs, i.e. a

ratio of 10 eggs per female (high density, representa-

tive of density conditions in industrial rearing for

mass-production) or 250 eggs (50 eggs per female, low

density). Food for female parasitoids was provided

ad libitum as drops of honey placed on the tube walls.

Host eggs were exposed 48 h to female parasitoids and

then put aside until emergence of the next parasitoid

generation. Individuals emerging from the next gen-

eration were then evaluated for their dispersal abilities

and fitness traits.

Measurement of dispersal abilities

Dispersal abilities were evaluated according to either

ambulatory dispersal (short distance, within-plant

dispersal) or aerial dispersal (long distance, between-
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plant dispersal), both of which were assessed using

original laboratory systems. These measures of dis-

persal are uncorrelated and aerial distance was found

to be a significant predictor of parasitism rate in larger-

scale environments representative of the level of

spatial complexity typically encountered in green-

house cultures (E. Vercken and E. Tabone, pers.

com.).

For ambulatory dispersal, the emergence tube was

connected to a series of eight glass cylinders (diameter

10 mm, length 100 mm) fastened together with soft

plastic seals. Parasitoids were allowed to walk within

the experimental set-up for 30 min (temperature:

25 �C, RH: 75 %), at the end of which the number

and sex of individuals inside each cylinder was

recorded to establish the distribution of dispersal

distances for each experimental population (Fig. 1).

Individuals retrieved from the different cylinders were

then used to measure their fitness traits. Tri-

chogramma tend to climb up and to orientate towards

light, so the experimental set-up was positioned

vertically with a light source on the top while the

emergence tube was darkened with black tape to

enhance dispersal behaviour. In addition, to limit

back-and-forth movements between the cylinders,

each connection between successive cylinders was

made through a funnel-shaped piece (1 mm-diameter

on the narrowest end). Between three and nine

replicates were done for each species and each density

level, with an average of 37 individual positions

recorded in each replicate population.

For aerial dispersal, as Trichogramma are usually

considered to have limited capacities for active flight,

the scale of the set-up was chosen to measure jumps or

short flights in absence of any air flow. In this set-up,

the emergence tube was connected to a circular

platform (50 mm diameter, 50 mm height), from

which individuals could jump into a large arena

(600 mm diameter, the platform being located in the

center, Fig. 2). The edges of the platform were coated

with petroleum jelly in order to prevent individuals

from walking down the sides. Parasitoids were

allowed to explore the experimental set-up for

30 min (temperature: 25 �C, RH: 75 %). The landing

position was recorded for individuals that jumped

Table 1 Description of Trichogramma populations

Species Sampling location Sampling date Generation timea (days)

T. acheae (A.02) Canaries Islands 2010 8

T. chilonis (ChiSB) Reunion Island 2004 8

T. euproctidis (34-Me-a1-36) France (Hérault) 2011 9

a Under standard laboratory conditions

Fig. 1 Experimental design

for estimation of ambulatory

dispersal of Trichogramma.

Individuals are allowed to

explore the set-up during

30 min, at the end of which

their position (tube number)

is recorded

Fig. 2 Experimental design for estimation of aerial dispersal of

Trichogramma. Each trial lasts 30 min. Every time an

individual jumps into in the arena, its landing position is

recorded and the individual is removed

A. Zboralski et al.
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from the platform (more than 80 %), after which

individuals were put aside for measuring fitness traits

later on. Similarly to the set-up for the evaluation of

ambulatory dispersal, a light source was positioned

20 cm above the platform and the emergence tube was

darkened with black tape to enhance dispersal

behaviour. Between four and ten replicates were done

for each species and each density level, with an

average of 11 individual positions recorded in each

replicate population.

Measurement of fitness traits

Females retrieved from each of the dispersal set-ups

were then evaluated for fecundity and survival

following dispersal. Each female was isolated in a

glass tube with 100 host eggs to parasitize and without

any food source. After 24 h, we recorded whether

females were still alive or not, and the host eggs were

put aside until emergence of the next generation. For

ambulatory dispersal, a maximum of ten females were

tested for each combination of species, density level

and class of distance walked (i.e., cylinder), for a total

of 31–95 females tested for each combination of

species and density level. For aerial dispersal, between

37 and 80 females were tested for each combination of

species and density level, for dispersal distances

ranging from 27 to 248 mm.

Statistical analyses

The distribution of ambulatory dispersal distance

followed a zero-inflated negative binomial distribu-

tion and aerial dispersal distance followed a Gamma

distribution. Both variables were analyzed with gen-

eralized linear mixed models (log link function in both

cases), with density level, sex of the individual and the

interaction between sex and density included as fixed

effects. Female realized fecundity and survival after

24 h starvation followed a Gaussian and a binomial

distribution. These were analyzed with linear mixed

models and generalized linear mixed models (logit

link function) respectively, with density level, disper-

sal distance and their interaction included as fixed

effects. In all analyses, species and experimental

replicate (nested within species) were modelled as

random factors. Significance of fixed effects was

estimated by likelihood-ratio tests between nested

models using Laplace estimations.

Results

Density-dependent dispersal

Ambulatory dispersal was found to depend on sex

(males covering longer distances than females,

Table 2), and on the interaction between sex and

density treatment. Females, but not males showed

reduced ambulatory dispersal when experiencing

higher larval densities (Table 2; Fig. 3a). Average

aerial dispersal distance was different between sexes,

with females covering longer distances than males

(Table 2). However, both sexes displayed reduced

aerial dispersal when experiencing higher larval

densities (single effect of density level, no interaction

with sex, Table 2; Fig. 3b).

Dispersal performance and female fitness

For both measures of dispersal, neither dispersal

distance, density level or their interaction had any

effect on survival after 24 h starvation (all p-val-

ues[ 0.15). In contrast, female fecundity was

strongly influenced by dispersal performance. For

both measures of dispersal, fecundity was positively

correlated with dispersal distance (Table 2; ambula-

tory dispersal, Fig. 4a; aerial dispersal, Fig. 4b). In the

case of ambulatory dispersal, fecundity was also

affected marginally by the interaction between density

level and dispersal distance (Table 2; the difference

between dispersing and non-dispersing females being

highest in the high-density treatment, Fig. 4a).

Discussion

Negative effects of rearing density

on Trichogramma phenotype

For both measures of dispersal, we found that

increased density during larval development resulted

in lower dispersal tendencies, at least for females.

Such negative density-dependent response could in

some contexts be advantageous to the parasitoid, in

particular when there is spatial heterogeneity in habitat

quality (Hassell and May 1988; Hirzel et al. 2007;

Rodrigues and Johnstone 2014). Such an advantage

should however strongly depend on the density

response for other fitness-related traits, as a density-
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dependent phenotype can arise from two distinct

mechanisms: (i) a global energetic or physiological

constraint acting on individual development under

high density conditions, in which case the whole

phenotype of the individual should be deteriorated

(Chaput-Bardy et al. 2010; Russell et al. 2011); or (ii) a

coordinated ontogenetic switch allowing to produce

alternative phenotypes with different life-history

trade-offs (Gross 1996).

In our experiment, dispersing females are always

more fertile than non-dispersing ones, irrespective of

density conditions. This implies that the decreased

dispersal rate observed at higher densities is unlikely

to be part of a coordinated alternative strategy, but

Table 2 Results from the statistical models

Variable Selected model Estimates SE v2 df p-value

Ambulatory distance Intercept 0.0305 0.4173

Densitya -0.0355 0.1030 1.4 1 0.23

Sexb -0.4155 0.2177 37.3 1 1.02 9 10-9

Density 9 sex -0.1438 0.0662 4.7 1 0.03

Aerial distance Intercept 4.0622 0.0943

Density -0.0481 0.0193 5.74 1 0.02

Sex 0.2588 19.02 1 1.29 9 10-5

Survival Not significant NA NA NA NA NA

Fecundity Intercept 24.1161 2.4032

Ambulatory distance 0.1643 0.4472 6.5 1 0.01

Density -0.3448 0.3545 0.19 1 0.66

Distance 9 density 0.4467 0.2530 3.1 1 0.07

Intercept 22.7191 2.3646

Aerial distance 0.0334 0.0113 8.1 1 4.44 9 10-3

a Density was calculated as the ratio of parasitoid females on the number of host patches (i.e., one for low density and five for high

density)
b These estimates are from treatment contrasts. This means that the intercept gives the value for a reference level for factors (in our

case, females), and the estimate for ‘‘Sex’’ is the deviation from this reference for the level ‘‘males’’

Fig. 3 Estimation of

dispersal distance

(a ambulatory dispersal;

b aerial dispersal) for three

species of Trichogramma in

function of sex and density

level during development.

Average ambulatory

dispersal distances are

driven towards low values

because of a zero-inflated

distribution. Error bars

represent 95 % confidence

intervals
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rather reflects the physiological constraints arising

from developing in a more competitive environment

(e.g., limited access to resources, delayed larval

development, Harvey 2005; Chaput-Bardy et al.

2010). Indeed, other experiments conducted in similar

dispersal set-ups revealed that low-dispersing individ-

uals have significantly shorter tibias than high-dis-

persing ones (M. Vilarelle, pers. com.), which

supports the hypothesis that mobility is limited by

developmental constraints. However, as individual

fitness was measured only in laboratory, non-spatial

conditions, and only on a subset of fitness-related

traits, more integrative measures of individual perfor-

mance under different levels of spatial heterogeneity

would be needed to assess more definitely how density

conditions experienced during early development

shape individual phenotype and fitness.

Implications for mass-rearing of biological control

agents

We found that density conditions representative of

mass-rearing for commercial purposes led to the

production of individuals with lower dispersal abilities

in Trichogramma. These low dispersers were also

found to display a reduced fecundity when compared

with more mobile individuals. However, we found no

difference in mean fecundity when comparing density

treatments directly, which means that this effect is

mediated through complex interactions with other

components of the phenotype, like dispersal abilities.

Such interactions at the phenotype level are also likely

to involve many other fitness-related traits that were

not investigated in our study, so that rearing density,

through its complex effect on phenotype development,

might have affected individual quality on many levels.

This might result in higher phenotypic variance in

fitness between individuals reared in high-density

conditions, even if the population is genetically

homogeneous, though not necessarily in lower aver-

age values. This could have some significant influence

on the performance of the biological control agents in

the field. In particular, undetected phenotypic plastic-

ity in performance-related traits could affect the

repeatability of host control across different release

programs (Lewis et al. 2003). Spatial heterogeneity in

performance related to individual variation in disper-

sal would also strongly affect the reliability and the

quality of the commercialised biological control agent

(van Lenteren 2003).

However, such indirect effects of rearing density on

individual quality and population performance might

remain unnoticed at the production stage if complex

components of the phenotype, like dispersal, are not

investigated. In this context, experimental settings like

those used in this study, which allow quantifying

complex traits while keeping a small temporal and

spatial study scale might prove useful to predict

realized performance in the field. While the need for

experimental procedures to assess complex compo-

nents of the phenotype in the context of quality control

of commercialised biological control has been advo-

cated repeatedly (Bigler 1994; van Lenteren et al.

2003), these approaches are still under-developed and

the relationship between traits measured in the lab and

larger-scale performance in the field is rarely

Fig. 4 Model fit of female

fecundity over 24 h after

dispersal experiment for

three species of

Trichogramma in function

of dispersal distance

(a ambulatory dispersal;

b aerial dispersal). Dots

represent experimental data

averaged by tubes for

ambulatory dispersal or over

20-mm distance intervals for

aerial dispersal (open circles

low density; full circles high

density)
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investigated (but see Dutton and Bigler 1995; Silva

et al. 2000).

Validation of dispersal protocols

Both dispersal protocols, although involving artificial

and simplified environments, seem to provide relevant

information regarding the dispersal abilities of Tri-

chogramma in the field. For ambulatory dispersal, the

distance covered along a vertical axis is likely to be an

indicator of the individual tendency to explore its

spatial environment at the within-plant scale. Regard-

ing aerial dispersal, Trichogramma are not skilled

fliers, and most of their between-plant dispersal is

assumed to be made through jumps or short flights

(Hendricks 1967; Yu et al. 1984; McDougall andMills

1997). These two measures of dispersal were evalu-

ated as predictors of parasitism efficiency in larger-

scale mesocosms including plants and Lepidopteran

hosts. While aerial dispersal distance was significantly

correlated with host suppression, ambulatory distance

was found to have no effect (E. Vercken and E.

Tabone, pers. com.). However, this particular trial

involved tomato plants, and tomato stems are covered

by trichomes that are expected to strongly hamper

ambulatory dispersal within the plant. In this particular

context, ambulatory dispersal should not have facil-

itated individual movement.

Therefore, we believe that our measure of ambu-

latory dispersal is informative, and gives complemen-

tary information from aerial dispersal. First, the two

measures are uncorrelated, which means that they

reflect different qualitative movement patterns. In

addition, the results from our experiments were highly

consistent across both dispersal measures: in both

cases, dispersal was negatively affected by density and

female fecundity was positively correlated with dis-

persal distance, while there was no effect on survival

after 24 h-starvation. We are thus confident that the

two measures are relevant regarding habitat use at

different spatial scales and can be considered as

reasonable proxies for dispersal abilities in most

agricultural environments. In addition to dispersal

abilities, other traits related to spatial performance,

like orientation and host detection in a complex spatial

environment or habitat use strategies would also bring

valuable insight regarding the alteration of parasitism

rate when switching from rearing conditions to the

field (Lewis et al. 2003; Vet et al. 2003).
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