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Abstract
During the early stages of invasion, the interaction between the features of the invaded landscape,
notably its spatial structure, and the internal dynamics of an introduced population has a crucial
impact on establishment and spread. By approximating introduction areas as networks of patches
linked by dispersal, we characterised their spatial structure with specific metrics and tested their
impact on two essential steps of the invasion process: establishment and spread. By combining
simulations with experimental introductions of Trichogramma chilonis (Hymenoptera: Trichogram-
matidae) in artificial laboratory microcosms, we demonstrated that spread was hindered by clus-
ters and accelerated by hubs but was also affected by small-population mechanisms prevalent for
invasions, such as Allee effects. Establishment was also affected by demographic mechanisms, in
interaction with network metrics. These results highlight the importance of considering the demog-
raphy of invaders as well as the structure of the invaded area to predict the outcome of invasions.
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INTRODUCTION

Managing invasions becomes increasingly costly and decreas-
ingly efficient with the expansion of the invaded area (Sim-
berloff et al. 2013). In invasion biology, focus is placed on the
processes occurring during the first generations after the intro-
duction of an exotic species, before its proliferation and
spread besides the introduction site. The dispersal abilities of
individuals during invasions and the way they evolve over the
course of the range expansion have been documented theoreti-
cally (Travis et al. 2009; Burton et al. 2010) and experimen-
tally, notably among protists (Fronhofer & Altermatt 2015)
and arthropods (Ochocki & Miller 2017; Weiss-Lehman et al.
2017). Although the role of individual characteristics on the
spread patterns is well known, the way individuals disperse
across a landscape also depends on the interaction between
individuals and the features of the environment (Calabrese &
Fagan 2004), which can themselves affect the evolution of dis-
persal (Baguette & Van Dyck 2007). Therefore, understanding
the structure of the invaded landscape is also essential to
understand the patterns of colonisation observed during the
first stages of an invasion.
Networks have gained popularity in the last decades as a

method to represent the spatial structure of such landscapes
(Urban & Keitt 2001; Minor & Urban 2007). They are used
to represent habitat patches suitable for the species considered
(the vertices of the network) and the way dispersal connects
them (the edges of the network). Networks are a powerful
tool associated with various metrics and used across a variety
of scientific fields, but they are still seldom used in invasion

biology. In this field, they are classically used to describe food
webs, to study how they are impacted by non-native species
or to assess the invasibility of a community based on its
trophic structure (Romanuk et al. 2009; Lurgi et al. 2014). A
few studies also represent the spatial structure of riverine sys-
tems as networks, to study the impact of the network struc-
ture on the composition of a community invading a new
environment (Seymour & Altermatt 2014; Alther & Altermatt
2018). This study aims at using networks in another way to
investigate the establishment and spread of the invader, with a
special focus on small-population demographic processes.
Although few usages of networks are recorded in invasion

biology, other fields provide insight about the impact of the
spatial structure of the introduction area on the first stages of
an invasion. Notably, several epidemiology studies correlate
specific metrics with patterns of spread. A prime example is
the combination of networks with models derived from classi-
cal Susceptible-Infected (SI) models (Kermack & McKendrick
1927), for example, to study the spread of nosocomial infec-
tions in hospitals (Ueno & Masuda 2008) or the transmission
of pathogens through grooming among macaques (Romano
et al. 2016). These studies usually consider networks made up
of hosts (the vertices) connected by social interactions (the
edges). Other studies consider larger scale networks, in which
vertices are populations of hosts and edges are host move-
ments between populations (Arino & Van den Driessche
2006). Such a framework has, for example, been used to
explain the extent of plague during the 14th century (G!omez
& Verd!u 2017) or to assess epidemic risks in the Japanese air-
line network (Tanaka et al. 2014). The conceptual similarities
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between the spread of disease outbreaks and the spread of
invading organisms have led studies in invasion biology to use
models originating from epidemiological modelling. They
notably have been used to study the impact of landscape
structure on the risks of invasive spread through forests (Fer-
rari & Lookingbill 2009) or across marinas via ballast waters
(Floerl et al. 2009). However, these studies fail to consider the
internal dynamics of each patch. Moreover, this impact of
network structure on invasion remains to be experimentally
tested.
Networks are also often used in conservation biology, nota-

bly to map the structure of metacommunities (Desjardins-
Proulx & Gravel 2012; Ai et al. 2013; Gravel et al. 2014;
Thompson et al. 2017) or metapopulations (Bunn et al. 2000;
Urban & Keitt 2001; Treml et al. 2008; Almany et al. 2009).
Network metrics are notably used to describe the connectivity
between patches, to study speciation (Desjardins-Proulx &
Gravel 2012) and species distribution across landscapes
(Gravel et al. 2014; Thompson et al. 2017) as well as the
mean lifetime of metapopulations (e.g. Bode et al. 2008;
Drechsler 2009; Kininmonth et al. 2010; Shtilerman & Stone
2015) or the extinction risks of subpopulations (e.g. Gilarranz
& Bascompte 2012; Peck 2012; Webb & Padgham 2013). They
are also used to identify essential populations to maintain
connectivity in a landscape (Bodin & Saura 2010; Baranyi
et al. 2011; Watson et al. 2011). Yet, those studies often focus
on the dispersal capabilities of individuals (Bodin & Saura
2010; Baranyi et al. 2011) or consider local population
dynamics only through global colonisation and extinction
probabilities, without considering explicitly the internal
dynamics of the subpopulations (Bode et al. 2008; Gilarranz
& Bascompte 2012; Shtilerman & Stone 2015). The studies
considering the internal dynamics of populations more pre-
cisely and its interaction with network features usually con-
cern large, already established populations, and their
susceptibility to disturbances, biotic (Mari et al. 2014) or abi-
otic (Gilarranz et al. 2017). Conversely, the present study
focuses on small-populations during their growth phase and
on specific associated mechanisms that can interact with the
network structure of the landscape.
Invaders usually experience multiple demographic bottle-

necks, firstly at the initial introduction and subsequently at
each colonisation event, which can strongly impact the success
of an invasion. Mechanisms associated with small-population
sizes are known to decrease establishment rates if the number
of individuals introduced is too low (Simberloff 2009) and to
block the spread of invaders to unoccupied patches (Keitt
et al. 2001; Johnson et al. 2006). Because of their easily tract-
able effect on population dynamics, Allee effects are classi-
cally considered to account for small-population dynamics
(Courchamp et al. 2008). However, other mechanisms affect
small introduced populations. For instance, they have high
risks of going extinct at random, a phenomenon known as
demographic stochasticity (Lande et al. 2003). Their probabil-
ity of not producing any individual able to successfully colo-
nise other patches is also greater, a phenomenon referred to
as dispersal stochasticity (Morel-Journel et al. 2016a). These
demographic mechanisms have been shown to interact with
dispersal and impact establishment. Strong emigration notably

tends to decrease the establishment rate of introduced popula-
tions by decreasing individual density in the introduction site
(Kean & Barlow 2000; Robinet et al. 2008; Morel-Journel
et al. 2016b). This study addresses the interplay between the
local dynamics of introduced populations and the network
structure, during the first stages of an invasion.
Network structure will be characterised using two metrics

related to the distribution of edges, that is, the way patches
are connected to one another: clustering and centralisation.
Clustering indicates the presence of clusters, that is, groups of
vertices well connected to one another (Watts & Strogatz
1998; Jord!an et al. 2003). Clusters have notably been shown
to hinder the spread of pathogens (Badham & Stocker 2010),
reduce the extinction risks of already colonised patches (Kin-
inmonth et al. 2010) and buffer the propagation of distur-
bances across metapopulations (Gilarranz et al. 2017). In the
context of invasion biology, they are expected to slow down
the spread by ‘trapping’ invaders. Invasions in highly clus-
tered landscape are therefore expected to create fewer, larger
populations, which could therefore also be less vulnerable to
extinction because of small-population mechanisms. Centrali-
sation indicates the presence of hubs, that is, patches concen-
trating many dispersal flows across the landscape. Hubs are
usually central elements in metapopulations, increasing con-
nectivity and the persistence of remote populations otherwise
isolated in fragmented landscapes (Watson et al. 2011). They
have been shown to increase the speed of infection spread
(Ueno & Masuda 2008; Romano et al. 2016) and to be more
likely to generate epidemic outbreaks (Da Silva et al. 2012).
In invasion biology, hubs are expected to facilitate the rapid
spread of invaders across the landscape. Therefore, they may
also increase extinction risks of small introduced populations
by decreasing the population density locally, especially if the
hub is the introduction site itself.
We developed an individual-based model to simulate the

first generations following introduction, in landscapes whose
structure was based on networks with known centralisation
and clustering levels. In addition, we performed introductions
of the parasitoid Trichogramma chilonis, in artificial land-
scapes, and followed the invasion dynamics during 10 genera-
tions. We chose the spatial structures of these artificial
landscapes among networks used in the simulations to specifi-
cally test the impacts of centralisation. We performed simula-
tions in the presence of Allee effects or with demographic
stochasticity alone, to investigate the interaction between
landscape structure and small-population mechanisms. T. chi-
lonis does not suffer from Allee effects (Morel-Journel et al.
2016a) but exhibits a strong stochasticity in reproduction and
in dispersal. Therefore, it provided a ‘null biological model’ of
an introduced population for the experiment. The combina-
tion of simulations and experiment is a powerful tool to test
hypotheses, and this approach has been at the root of land-
mark results that have become classics in ecology, for exam-
ple, the competitive exclusion principle (Gause 1934), chaotic
population dynamics (Cushing et al. 2002), stochasticity in
spread rates (Melbourne & Hastings 2009) or population
extinction risks (Drake et al. 2011). Nevertheless, invasion
biology – as well as epidemiology and conservation biology,
two other fields using spatial network – is heavily dominated
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by theoretical development and lack experimental validations
of classical theoretical predictions, which are essential for the
emergence of new hypotheses and the building of a compre-
hensive ecological theory.
Our results provide the first experimental pieces of evidence

of the impacts of landscape structure on the spread of inva-
sive species. The consistency between these results and others
in different fields demonstrates that the impacts of centralisa-
tion and clustering on spreading speed are robust to the eco-
logical context. In addition, our simulations highlight the
impact of Allee effects not only on the persistence of invasive
populations but also on the colonisation speed itself. Another
interesting result is that high-density mechanisms, such as
over-competition, can operate even at an early stage and
underpin invasion failures depending on the network structure
of the landscape. Besides highlighting the importance of land-
scape structure to predict the outcome of invasions, our study
demonstrates its interplay with internal population dynamics.

METHODS

The network structure of the landscapes

Using the igraph package (Csardi & Nepusz 2006) of the R
software (R CoreTeam 2018), we generated 112618 networks
with a number of vertices Nv = 10 and a number of edges
Ne = 15 (see Supporting information 1 about the generation
and selection of these networks). This set of networks repre-
sented all the possible different structures of connected, undi-
rected and unlabelled networks. We computed two metrics to
characterise each network: their clustering coefficient T indi-
cating the presence of clusters, and their centralisation level C
indicating the presence of hubs (see Supporting information 1
about the computation of these indices). We chose to use
closeness centrality as a basis for computing C and to identify
the most central vertex of each network (called the hub there-
after). This metric accounts for the length of each path linking
a given node to the rest of the network (Freeman 1978). If
several vertices shared the highest closeness value, the hub
was selected at random among them.

Simulations

We developed an individual-based model to simulate inva-
sions in landscape whose spatial structure was described in
the previous section (see Supporting information 2 about the
description of the model). This model was in discrete time,
with two successive phases dispersal between patches and
local population growth. In this model, individuals had no
intrinsic dispersal propensity, and dispersal probability only
depends on di (the degree of the vertex the individual is in)
and pe (the dispersal rate of individuals in a vertex with
di = 1). Additional simulations including density-dependent
dispersal were performed in order to understand how the
way dispersal was modelled influenced the impact of C and
T on the invasion dynamics (see Supporting information 4).
Dispersal was then defined by c (a minimal dispersal rate)
and d (describing the increase in dispersal propensity with
local density). Local population growth was itself divided

into two phases. The first concerns mating, affected by m, a
density-independent mating probability, and a, a parameter
describing potential mating Allee effects. The second is a
reproduction phase, affected by a, the intraspecific competi-
tion; b, the fecundity rate of individuals; and s, the survival
rate of juveniles.
Using this model, we simulated 20 time steps after a single

introduction of 15 individuals in one patch of the landscape,
for pe = 0.03, m = 0.8, a = 0.008, b = 15 and s = 0.1 (see Sup-
porting information 5 for sensitivity analyses of these parame-
ters). The initial population size was chosen so that extinction
because of low numbers was possible but not systematic. We
simulated 2 9 2 invasions for each network in our set, with
either a = 0 (without Allee effects) or a = 2.5 (with Allee
effects) and with an introduction site which was either the
hub (the patch corresponding to the most central vertex) or
another patch selected at random.

Experiment

To complement the simulations, we monitored artificial inva-
sions of the egg parasitoid Trichogramma chilonis (Hymenop-
tera: Trichogrammatidae) in laboratory microcosm landscapes,
for 10 non-overlapping generations following an initial intro-
duction of 15 individuals (see Supporting information 3 for
details about the experimental setup). This model species is
especially suited for our experiment, because of its small size
(c. 1 mm), its short and regular developmental cycle (consis-
tently 9 days to reach the adult stage) and its ability to para-
sitise its laboratory host Ephestia kuehniella (Lepidoptera:
Pyralidae). The latter allowed us to focus on T. chilonis by
suppressing the host’s dynamic and estimate population sizes
throughout the experiment by counting the parasitised at each
generation (see Supporting information 3). Moreover, we
could control for impacts of the genetic makeup of the intro-
duced populations by introducing individuals from the same
inbred line, founded by a single female and maintained in the
laboratory for over 100 generations.
All the microcosm landscapes were made up of 10 patches

connected by 15 corridors, and their spatial structure was
selected at random in two subsets of the set of networks pre-
viously established (see Supporting information 1): the ‘high-
C’ and ‘low-C’ landscapes, whose centralisation values were,
respectively, in the 10% highest and 10% lowest of all the
centralisation values in the network set. We performed 63
artificial introductions equally distributed across three treat-
ments: (1) in a patch selected at random in a low-C landscape,
(2) in a hub in a high-C landscape, (3) in another patch than
the hub in a high-C landscape. The 63 artificial landscapes
were distributed equally across three experimental blocks, that
is, three replicates of each treatment in each block.

Analysis of the results

We considered three response variables: the global extinction
rate, the introduction site’s extinction rate and the colonisa-
tion speed. The global extinction rate was computed as the
proportion of invasions during which all the patches went
extinct. The introduction site’s extinction rate was computed

© 2018 John Wiley & Sons Ltd/CNRS

Letter Hubs and invasion in habitat networks 3



as the proportion of invasions during which the introduction
site went extinct at least once. Both extinction rates followed
binomial distributions and were analysed with logistic regres-
sions. The colonisation speed was computed as the ratio
between the maximal number of patches colonised and the
number of generations to reach this maximal extent. Consid-
ering the maximum extent allowed us to differentiate failed
establishments from the start from ‘boom-and-bust’ inva-
sions. The colonisation speed had a continuous and positive
distribution clustered towards low values and was therefore
analysed with a gamma regression. We considered a fourth
response variable for the experiment: the size reached by a
local population at the generation preceding its extinction.
These values were distributed as an overdispersed Poisson
distribution that were analysed using a negative binomial
regression.
We used AIC comparisons to assess the respective impor-

tance of C and T as explanatory variables in the simulations.
We considered a model including both variables (CT model),
one with only C (C model) and one with only T (T model).
We computed DC as the difference between the AIC of the
CT model and the T model, and DT as the difference between
the AIC of the CT model and the C model. We considered
that values of DT or DC greater than 10 indicated that the sup-
port for the CT model was unequivocally higher than for the
other model (Burnham & Anderson 2003). To analyse the
experimental results, we used generalised linear mixed models,
to account for potential differences created by the experimen-
tal blocks. The experimental block was treated as a crossed
random effect, as the treatments were distributed equally
across all blocks.

RESULTS

Simulations

The global extinction rate was always negligible in the simula-
tions when a = 0 (no Allee effect), regardless of the introduc-
tion site or the landscape characteristics (Fig. 1a,b). It was on
average higher when a = 2.5 but was independent from clus-
tering whether the introduction was performed in the hub
(DT = !0.66) or elsewhere in the landscape (DT = !0.95). The
centralisation level had an impact, but only when a = 2.5 and
for an introduction in the hub (DC = 605.44). In this case, the
global extinction rate increased with C (Fig. 1a).
The introduction site’s extinction rate was also overall

higher when a = 2.5 than when a = 0 but was impacted by
centralisation regardless of Allee effects when individuals were
introduced in the hub (Table 1). In this case, centralisation
increased the extinction rate, with a large majority of intro-
duction sites going extinct at high C levels (Fig. 1c). The
impact of clustering appeared only for introductions in the
hub and a = 2.5 (DT = 9.70). In this case, it decreased slightly
the extinction rate of the introduction site (Fig. 1d).
Centralisation had a substantial positive impact on colonisa-

tion speeds when individuals were introduced in the hub itself
(Fig. 1e), whether a = 0 (DC = 1549.51) or a = 2.5 (DC =
3576.94). Its positive impact was weaker for introductions
outside of the hub, although it was still significant when a = 0

(DC = 55.18, Fig. 1e). Clustering markedly decreased the
colonisation speeds when a = 0, when introductions were per-
formed in the hub (DT = 865.15) or elsewhere (DT = 648.80).
Its impact was, however, limited when a = 2.5 for introduc-
tions in the hub (DT = 29.20) and negligible for introductions
outside of the hub (DT = !0.58). Overall, the colonisation
speeds were higher when a = 0 compared to a = 2.5.
The sensitivity analyses performed on the parameters of the

model (see Supporting information 4) showed that, although
the parameters could have an impact on the values of the
response variables (the global extinction rate, the introduction
site’s extinction rate or the colonisation speed), they did not
affect qualitatively the relationships between centralisation or
clustering and these response variables.

Experiment

We were not able to evidence differences between the three
experimental treatments concerning the extinction rates
(Fig. 2), neither at the level of the whole landscape (Likeli-
hood Ratio Test, df = 2; P = 0.344) nor at the level of the
introduction site (Likelihood Ratio Test, df = 2; P = 0.747).
However, the sizes of the local populations going extinct dur-
ing the invasions of high-C landscapes after an introduction
outside of the hub were significantly higher than those in low-
C landscapes (Wald test; z = 2.325, P = 0.021) and those in
high-C landscapes with introductions in the hub (Wald test;
z = 2.951, P = 0.004).
The colonisation speeds recorded during the experiment

were overall low (way less than one patch per generation on
average), but they were significantly higher in the high-C land-
scapes compared to the low-C landscapes (Wald test;
z = 2.980, P = 0.0014), but only when the hub was the intro-
duction site. Otherwise, there were no discernable differences
in the colonisation speeds between high-C and low-C land-
scapes (Wald test z = 0.594; P = 0.552).

DISCUSSION

Impacts of landscape structure on spread

Both the simulations and the experiments evidenced an impact
of landscape structure on spread. The colonisation of new
patches by invaders was slowed down by the presence of clus-
ters and accelerated by the presence of hubs. The effect of
centralisation was dominant when individuals were initially
introduced in the hub itself, although it was still significant
when the introduction site was chosen at random in the simu-
lations. Our results are consistent with other studies in other
fields, and thus confirm the effect of the network structure
itself on spread, regardless of context.
Centrality was repeatedly shown to facilitate the transmis-

sion of infections (e.g. Christley et al. 2005; Ueno & Masuda
2008; Da Silva et al. 2012; Romano et al. 2016). Epidemics
starting in hubs were shown to reach greater sizes, thus under-
lining the influence of the hub at the start of spread (Da Silva
et al. 2012), which we confirm in the context of invasions
using simulations and experiments. Other studies showed that
the most central agents also have higher chances of being
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infected (Christley et al. 2005; Romano et al. 2016). In studies
in epidemiology considering networks of populations, the
most central vertices are susceptible to re-infections, even after
the initial epidemic outbreak. This phenomenon, likely behind
some of the greatest epidemics (e.g. G!omez & Verd!u 2017),
also underpins major challenges for the control of invasive
populations; the most central patches do not only increase the
speed of invasive spread but are also more likely to be
invaded.
Our simulation results concerning clustering are also consis-

tent with epidemiological studies showing its role in limiting
the speed and extent of infections (Keeling 2005; Miller 2009;
Badham & Stocker 2010). Moreover, Gilarranz et al. (2017)
provide experimental evidence that modularity also prevents
spread in a similar context: the propagation of disturbances.
Modularity, which is particularly used in trophic (Dormann &

Strauss 2014; Beckett 2016) and genetic networks (Fletcher
et al. 2013; Peterman et al. 2016), describes the belonging of
vertices to modules, that is, subparts of the network highly
connected (Newman & Girvan 2004). In a metapopulation
context, Gilarranz et al. (2017) show that disturbances occur-
ring in one module mostly affect other populations in this
module, similar to the way clusters “trap” introduced individ-
uals in our simulation results.
Although they did not dramatically change the impacts of

centralisation or clustering, Allee effects reduced the colonisa-
tion speed in the simulations. This result is consistent with the
theoretical predictions of Keitt et al. (2001), which suggest
that Allee effects can act as a supplementary hurdle to coloni-
sation, preventing the small-populations at the margin of the
invaded area to produce enough dispersing individuals to suc-
cessfully colonising new patches. This impact of population
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dynamics on colonisation speed echoes theoretical results on
the variation in speed rates with density-dependent growth
(Sullivan et al. 2017) and on pushed invasion (Lewis & Kar-
eiva 1993; Roques et al. 2012). The low colonisation speeds
observed during our microcosm invasions indicated that

colonisation failures also occurred during the experiment, cre-
ating a ‘pushed-like’ invasion pattern likely caused by disper-
sal stochasticity, as evidenced in Morel-Journel et al. (2016a)
in the same experimental system.

Impacts of landscape structure on establishment

In addition to affecting the spread of invaders, the network
structure of the introduction area also impacted the dynamics
of the introduced populations. While the results concerning
spread suggest that the same mechanisms were at play in the
experiment and the simulations, extinction appears to be
underpinned by different causes. In the simulations, the cen-
tralisation of the landscape increased the introduction site’s
extinction rate when individuals were introduced in the hub.
This result highlights a trade-off between colonisation and
local persistence at the beginning of invasions, which is consis-
tent with previous works in invasion biology. Theoretical
(Lewis & Kareiva 1993; Kanarek et al. 2013) and empirical
(Robinet et al. 2008; Vercken et al. 2011) studies underline
the negative impact of dispersal soon after the introduction
on the persistence of introduced populations. However, the
mechanism invoked by these studies to explain these extinc-
tions is the Allee effect, while our simulation results show that

Table 1 Differences in AIC between the T-model (DC) or the C model
(DT) and the CT model for the simulation results. All the values greater
than 10 (indicating unequivocal higher support for the CT model com-
pared to the other one) are in bold

Response variable
Allee
effect Intro. site DC DT

Global extinction rate a = 0 In the hub !1.90 !1.49
a = 0 Outside 5.44 0.79
a = 2.5 In the hub 605.44 !0.66
a = 2.5 Outside 2.47 !0.95

Introduction site
extinction rate

a = 0 In the hub 233.61 !0.11
a = 0 Outside !0.56 0.38
a = 2.5 In the hub 2219.53 9.70
a = 2.5 Outside 2.65 !1.95

Colonisation speed a = 0 In the hub 3576.94 865.15
a = 0 Outside 55.18 648.80
a = 2.5 In the hub 1549.51 29.20
a = 2.5 Outside 1.27 !0.58

Figure 2 Mean experimental values for global extinction rates (a), the introduction site’s extinction rates (b), colonisation speeds (c) and populations size
before their extinction (d), for the experimental introductions in low-C landscapes (blue), high-C landscapes outside of the hub (yellow) and high-C
landscapes in the hub (red). The error bars represent two times the standard deviation from the mean value and the dots represent the raw values.
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the extinction of the introduction site can occur because of
demographic stochasticity alone.
During the experiment, local extinctions occurred regardless

of the treatment considered. If some extinctions occurring at
small-population sizes can be attributed to demographic
stochasticity, other populations went extinct while they were
close to the carrying capacity, which rather suggests that they
suffered from over-competition. This would be consistent with
the biology of T. chilonis, which can be subject to strong
over-competition through superparasitism (Suzuki et al.
1984). This phenomenon occurred most often for introduc-
tions outside of the hub in high-C landscapes, that is, in
poorly connected patches. Because of their low dispersal rate,
individuals mostly remained in the isolated introduction site,
where they rapidly suffered from superparasitism and eventu-
ally went extinct.
Complete establishment failures not only required the

extinction of the introduction site but also that individuals fail
to colonise other patches. While we recorded extinctions of
the introduction site regardless of Allee effects in the simula-
tions, most of them did not lead to global extinctions for
a = 0. Interestingly, the most important impact of Allee
effects on establishment was to prevent the colonisation of
new patches in the landscape. During the experiment, coloni-
sation failures resulted from an extinction of the introduction
site, either because of demographic stochasticity or over-com-
petition, combined with colonisation failures because of low
dispersal rate and dispersal stochasticity.

Impact of dispersal behaviour of the individuals

Since the dispersal was treated as a diffusion process in our
model, individuals had no intrinsic dispersal propensity and
dispersed only depending on the connections between patches.
Although previous results by Morel-Journel et al. (2016b)
showed the validity of this approximation to describe T. chilo-
nis in our experimental system, we performed additional simu-
lations in which dispersal was impacted by local density, rather
than the structure of the landscape (Supporting information 4).
The colonisation patterns observed remained similar to those
observed without density-dependent dispersal (a positive
impact of centralisation and a negative impact of clustering),
but these effects were independent from the location of the
introduction site. The effects of landscape structure on extinc-
tion were also slightly modified, as the increase in the extinction
rate with centralisation was partly buffered by density-depen-
dent dispersal, and clustering tended to decrease the extinction
rates. Indeed, centralisation consistently increased the extinc-
tion rate of the introduction site for high enough dispersal
rates, but it had no impact on the global extinction rate,
regardless of Allee effects. Clustering decreased extinction rates
in the presence of Allee effects, both globally and in the intro-
duction site, especially with strong density dependence of dis-
persal. Therefore, the persistence of metapopulations was
overall higher when dispersal was density dependent.
Besides external factors such as local density, dispersal can

also depend on intrinsic differences between individuals. Dur-
ing spread, dispersal is not only impacted by the genetic

background of the introduced individuals but also affects the
spatial distribution of genotypes across space. This feedback
loop was not considered in our model because all the individ-
uals were considered identical, but such evolution during
range expansion has been documented experimentally (Fron-
hofer & Altermatt 2015; Ochocki & Miller 2017; Weiss-Leh-
man et al. 2017). Yet, we expected the impact of the genetic
background of individuals or potential variations between
populations to be minimal during our experiment, because of
the very low genetic variability in the populations initially
introduced (15 individuals from the same inbred line).

Impact of the size of the landscape

The number of vertices of the landscapes used in this study
(Nv = 10) was not only smaller than the values used for
epidemiology studies but also smaller than the sizes used
for network describing entire landscapes. As we aimed at
describing invasions dynamics just after the introduction, we
created landscapes corresponding to the direct surroundings
of the introduction site only. To test the validity of the
results presented in larger landscapes, we performed addi-
tional simulations, with networks with a larger number of
edges (Ne varying between 20 and 40) and with a larger
number of vertices (Nv varying between 20 and 100) (see
Supporting information 6). The results indicate that the
effects of clustering were robust to variations in the number
of vertices, while the effects of centralisation became
weaker, although they remained qualitatively the same. The
effects of these metrics were also robust to variations in the
number of edges, up to a point. For high values of Ne,
such network-level metrics become irrelevant, as almost
every patch can be considered a hub and belonging to a
cluster.

CONCLUSION

Predicting the fate of introduced species remains a central
objective of invasion biology. This study is a first demonstra-
tion of the use of network theory in this context to charac-
terise the structure of landscapes and predict their
invasibility. We built upon previous results in epidemiology
or conservation to investigate the robustness of the influence
of network structure on spread patterns. In addition, our
study highlights interactions between the two network metrics
studied – centralisation and clustering – and small-population
dynamics characteristic of early stages of invasion. Among
the involved small-population mechanisms, Allee effects often
provide a simple and elegant way to describe the positive
density dependence occurring in small introduced popula-
tions, but they lack generality and empirical support (Kramer
et al. 2009; Gregory et al. 2010). Our results demonstrate that
demographic and dispersal stochasticities can create similar
patterns, by bringing small, well-connected populations to
extinction, or by preventing colonisation. Moreover, negative
density dependence and competitive interactions can also
interact with landscape structure and affect the outcome of
potential invasions.

© 2018 John Wiley & Sons Ltd/CNRS
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