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Range expansions are key processes shaping the distribution of species; their ecological 
and evolutionary dynamics have become especially relevant today, as human influence 
reshapes ecosystems worldwide. Many attempts to explain and predict range expan-
sions assume, explicitly or implicitly, so-called ‘pulled’ expansion dynamics, in which 
the low-density edge populations provide most of the ‘fuel’ for the species advance. 
Some expansions, however, exhibit very different dynamics, with high-density popu-
lations behind the front ‘pushing’ the expansion forward. These two types of expan-
sions are predicted to have different effects on e.g. genetic diversity and habitat quality 
sensitivity. However, empirical studies are lacking due to the challenge of generating 
reliably pushed versus pulled expansions in the laboratory, or discriminating them in 
the field. We here propose that manipulating the degree of connectivity among popu-
lations may prove a more generalizable way to create pushed expansions. We demon-
strate this with individual-based simulations as well as replicated experimental range 
expansions (using the parasitoid wasp Trichogramma brassicae as model). By analyzing 
expansion velocities and neutral genetic diversity, we showed that reducing connectiv-
ity led to pushed dynamics. Low connectivity alone, i.e. without density-dependent 
dispersal, can only lead to ‘weakly pushed’ expansions, where invasion speed conforms 
to pushed expectations, but the decline in genetic diversity does not. In empirical 
expansions however, low connectivity may in some cases also lead to adjustments to 
the dispersal-density function, recreating ‘classical’ pushed expansions. In the current 
context of habitat loss and fragmentation, we need to better account for this relation-
ship between connectivity and expansion regimes to successfully predict the ecological 
and evolutionary consequences of range expansions.
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Introduction

Range expansions and range shifts into novel habitats and 
landscapes are key ecological processes shaping the abun-
dance and distribution of species (Sexton  et  al. 2009). 
Understanding their ecological and evolutionary drivers and 
consequences has become especially relevant in the context 
of more frequent biological invasions (Renault  et  al. 2018, 
Miller et al. 2020) or increasing impacts of climate change 
(Hill et al. 2011, Lenoir et al. 2020).

Range expansions are usually modelled and analyzed in a 
framework based on the Fisher-KPP partial differential equa-
tion and its numerous declinations (Hastings  et  al. 2005, 
Lewis et al. 2016). In this framework, range dynamics gener-
ally converge to solutions of constant profiles moving in space 
at a fixed velocity, called travelling waves. Travelling waves 
are considered ‘pulled’ when spread is driven mostly, if not 
only, by the dynamics at the leading edge of the expansion. In 
biological range expansions, this happens when growth and 
dispersal rates are maximal at low densities; the velocity of the 
wave then only depends on low-density dispersal and growth 
(Birzu  et  al. 2019). While growth and dispersal functions 
that are expected to generate pulled expansions certainly hap-
pen in nature (Matthysen 2005, Williams and Levine 2018, 
Harman  et  al. 2020), they are not the only ones possible. 
For instance, growth rates can be reduced at low densities 
compared to intermediate ones, a phenomenon known as the 
Allee effect (Berec et al. 2007). Additionally, dispersal is often 
maximal at high densities (positive density-dependence) as 
it provides a mechanism to escape increased competition 
(Matthysen 2005, Harman  et  al. 2020). In both cases, we 
would expect the advance of the expansion to be driven not 
by the low-density front populations, but by the population 
dynamics in a region located behind the front, where growth 
and/or dispersal are maximal. These ‘pushed’ waves (Stokes 
1976) behave very differently than pulled waves (Lewis et al. 
2016). They will typically advance faster than expected based 
solely on growth and dispersal rates observed at low densities 
(i.e. in edge patches; Gandhi et al. 2019). The ratio of the 
actual expansion velocity to the velocity expected for the cor-
responding pulled expansion has been proposed as a quan-
titative indicator discriminating pulled, ‘semi-pushed’ and 
pushed expansions (Birzu  et  al. 2018). This ratio has been 
connected to other key metrics expected to vary along the 
pushed/pulled gradient (Birzu et al. 2018). In the context of 
biological range expansions or shifts, this includes the rate 
at which the edge or front of the expansion loses genetic 
diversity due to drift and successive founding events as it 
advances. Indeed, models and experiments show that neutral 
genetic diversity is lost at the expanding edge much more 
slowly in pushed than in pulled expansions (Hallatschek and 
Nelson 2008, Roques et al. 2012, Birzu et al. 2018, 2019, 
Gandhi et al. 2019), with estimated times to allele fixation 
differing by up to several orders of magnitude (Gandhi et al. 
2019).

A key challenge for empirically studying the ecological and 
evolutionary consequences of pushed and pulled expansions 

(which, besides neutral genetic diversity, remain poorly 
known; discussion in Birzu et al. 2019) is to obtain compa-
rable expansions known to be either pushed or pulled. One 
could contrast strains, populations or closely related species 
naturally differing in density-dependent dispersal and/or Allee 
effects (Matthysen 2005, Jacob  et  al. 2019, Harman  et  al. 
2020, Walter  et  al. 2020). However, they are likely to also 
differ in other key traits (Jacob  et  al. 2019), making direct 
comparisons difficult. A better experimental solution would 
be to manipulate the focal species/population/strain’s environ-
ment to change the presence or strength of Allee effects and/
or density-dependent dispersal. For instance, Gandhi  et  al. 
(2016, 2019) managed to reliably produce pushed expansions 
by changing the substrate on which Saccharomyces cerevisiae 
yeasts were grown: while yeasts grow best at low densities on 
galactose, they present an Allee effect when they have to use 
sucrose. Externally manipulating density-dependent dispersal 
may be more difficult, but could conceivably also be done 
by manipulating resource quality (Van Allen and Bhavsar 
2014, Endriss et al. 2019). Adding or removing conspecific 
cues independently of actual population size may also be an 
option (De Meester and Bonte 2010), but not all organisms 
have resources or cues that are easy and useful to manipulate 
experimentally (Fellous et al. 2012).

Rather than manipulating the within-habitat conditions, 
another solution that may be easier to generalize would be to 
reduce the level of connectivity among habitats. In a spatially 
structured environment, this could be done experimentally 
by e.g. altering the number, length or quality of the physi-
cal links between patches/populations. We hypothesize such 
experimental manipulations could lead to more pushed expan-
sions because of dispersal stochasticity. Indeed, at low popu-
lation sizes, reducing the dispersal rate sharply increases the 
risk the smaller populations at the edge of the expansion will 
fail to send any disperser, due to stochasticity alone (Fig. 1). 
Reduced dispersal rate could thus increase the influence of 
population density on dispersal success, leading to pushed 
expansions. This effect would occur when populations at the 
very edge of the expansions are of few individuals, typically 
less than a hundred (Fig. 1). Edge population densities low 
enough to trigger the effect described in Fig. 1 are probably 
not uncommon in some taxonomic groups, where core popu-
lation sizes are in the 100–1000 range (Krauss et al. 2003, 
Santini et al. 2018). These are however much lower densities 
than those considered in most pushed expansion models and 
experiments (Birzu et al. 2018, Gandhi et al. 2019). The idea 
that expansions that should be pulled at asymptotically large 
carrying capacities can nonetheless appear pushed at lower 
densities, at least in terms of velocity dynamics, is not new. 
It was previously raised by Panja and van Saarloos (2002) 
and reviewed/expanded on in Panja (2004), which called 
these ‘weakly pushed’ expansions (not to be confused with 
‘semi-pushed’ expansions sensu Birzu et  al. 2018). ‘Weakly 
pushed’ expansions arise when we stop assuming continuous 
fluid-like population densities can approximate the stochas-
tic dynamics of discrete individuals in discrete/discretized 
space. Revisiting earlier range expansion studies including 
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discreteness, we can indeed find hints that added dispersal 
stochasticity or decreased connectivity leads to population 
patterns resembling those seen in pushed expansions (Morel-
Journel  et  al. 2016, Reluga 2016, Williams and Levine 
2018). However, there is still no actual confirmation that 
reduced connectivity can produce pushed expansions (even 
in the ‘weakly pushed’ sense), or that these expansions would 
share all key characteristics of pushed expansions that interest 
ecologists and evolutionary biologists (such as the dynamics 
of genetic diversity).

In the present study, we combined simulations and experi-
mental approaches to study the effect of reduced connectivity 
on the pushed versus pulled status of expansions, at popula-
tion sizes that are realistic for many ‘macroscopic’ organisms. 
In individual-based simulations, we examined expansion 
velocities and the dynamics of neutral genetic diversity to 
(a) confirm Allee effects and density-dependent dispersal 
(Birzu  et  al. 2019) still lead to pushed expansions at ‘low’ 
equilibrium population sizes K, and (b) show that reducing 
connectivity can also generate (weakly) pushed fronts even 
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Figure 1. (A) Probability that at least one individual disperses from a patch (Pr(n > 0)) as a function of its population size N pre-dispersal 
and average dispersal rate D. (B) Coefficient of variation of the number of dispersers. Dispersal stochasticity is obtained by assuming the 
number of dispersers n from a patch is drawn from a Binomial distribution n ~ Binom (N,D). Note the log scale on the x-axes.
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in the absence of the other two mechanisms. We comple-
mented this approach by using minute wasps of the genus 
Trichogramma (Morel-Journel et al. 2016, Haond et al. 2018) 
in replicated experimental landscapes (Larsen and Hargreaves 
2020), to investigate whether reduced connectivity influ-
enced the velocity and neutral genetic dynamics of ‘real’ 
range expansions.

Methods

Simulations

To determine whether the new mechanism we propose, 
reduced connectivity, can actually generate pushed expan-
sions, we used an individual-based model (IBM) approach. 
The model is in discrete time and space and simulates the 
dynamics of a haploid clonal species with non-overlapping 
generations, expanding in one direction in a one-dimensional 
landscape. Conceptually, the model is inspired by previous 
models by Birzu et al. (2018, 2019) and Haond et al. (2018), 
as well as Gandhi et al. (2016, 2019)’s experiments. Range 
expansions unfold during 100 generations in a landscape 
long enough that they never run out of empty patches. In 
practice, given the expansions advance in only one direc-
tion and individuals can only disperse at most one patch per 
generation, this means any landscape length higher than the 
number of generations. All patches are of equal and constant 
quality, determined by the equilibrium population density K.

At the start of the expansion, K adult individuals that have 
not yet reproduced are introduced in one patch at one of 
the two extremities of the landscape (coordinate x = 0). To 
be able to later study genetic diversity, all individuals are ran-
domly assigned one of two allele values (coded 0 and 1) at a 
neutral genetic locus L. Each generation until the end of a 
run, the life cycle then happens as follows:

1.	 Adult individuals disperse with a probability 
D D N K= ( ) + ´( )-logit logit density

1
0 b / , where N is 

the patch population size immediately before the dispersal 
phase, D0 is the (hypothetical) dispersal rate at N = 0 and 
βdensity the slope of the dispersal-density relationship on the 
logit scale. This function is based on the way empirical 
dispersal-density data are usually analyzed (through gen-
eralized linear models; De Meester and Bonte 2010, Van 
Allen and Bhavsar 2014). Dispersers randomly move to 
one of the nearest neighboring patches; that is, the maxi-
mal dispersal distance is of 1 patch.

2.	 Reproduction occurs post-dispersal; the number of 
offspring F each individual produces is drawn from a 
Poisson(µ) distribution. The mean fecundity µ is based 
on a Ricker equation modified to allow potential Allee 
effects (Morel-Journel et al. 2016): m = -( ) -( )er N K A N0 1 1/ / . 
In this equation, r0 is the hypothetical population growth 
rate at N = 0 in the absence of Allee effects, and A an Allee 
threshold such that A = 0 leads to no Allee effects, 0 < A 

≤ 1 leads to weak Allee effects (sensu Berec et al. 2007, 
i.e. where positive density-dependent growth never leads 
to negative growth rates), and A > 1 leads to strong Allee 
effects (where growth rates are negative for N < A). All 
new individuals inherit the value at the neutral locus L 
from their parent with no mutation.

3.	 All adults die; juveniles then become adults.

The model was written in Netlogo (Wilensky 1999), ver. 
6.1.1, and set up using the nlrx R package (Salecker  et  al. 
2019). We tested 5 scenarios (× 2 possible values of K; below 
and Fig. 2). The ‘reference’ scenario had no Allee effects, 
no density-dependent dispersal (βdensity = 0) and a dispersal 
rate D0 set to 0.2, a biologically ‘typical’ rate according to 
experimental (Fronhofer et al. 2018) or natural observations 
(Marjamäki et al. 2013, Stevens et al. 2013), spanning many 
taxa. Three other scenarios, which we expected to lead to 
pushed expansions, each differed from the reference by one 
parameter: either a weak Allee effect was present (A = 0.95), 
there was positive-density-dependent dispersal (βdensity = 1) or 
connectivity was reduced by half (D0 = 0.1). The fifth sce-
nario was a combination of reduced connectivity and den-
sity-dependent dispersal (βdensity = 1 and D0 = 0.1). In all cases 
r0 was set to log(5), which is well within the range of plausible 
values for insects (Hassell  et al. 1976). We tested each sce-
nario for two values of the equilibrium density K, 225 and 
450 individuals per patch, as the relationship between K and 
the expansion velocity v is expected to differ between pushed 
and pulled expansions (Haond  et  al. 2018). These densi-
ties are within the range of K used in Haond et al. (2018)’s 
simulations and experiments, and correspond respectively 
to 50% and 100% of the largest possible population in our 
own experimental expansions. These values of K are also 
within one order of magnitude of those seen for some spe-
cies of butterflies (Krauss et al. 2003) or herbaceous plants 
(Dauber et al. 2010) in patchy environments, or in land mol-
lusks (Kappes et al. 2009) assuming a typical home range of 
a few m2 at most (Bailey 1989). Each scenario × K combina-
tion was replicated 100 times.

Experimental range expansions

We used laboratory strains of the haplo-diploid egg parasitoid 
Trichogramma brassicae (Hymenoptera: Trichogrammatidae) 
as our model in experiments (Supporting information). 
Trichogramma brassicae wasps are raised routinely in the lab 
using eggs of the Mediterranean flour moth Ephestia kue-
hniella (Lepidoptera: Pyralidae) as substitution host. Ephestia 
kuehniella eggs are irradiated before use, which prevents 
their larval development while still allowing Trichogramma 
wasps to use them as hosts (St-Onge et al. 2014). To be able 
to better generalize our results, we used three independent 
genetic mixes of T. brassicae (Supporting information). Note 
that the effect of genetic background itself is not the object 
of the present manuscript, and is thus not analyzed directly 
in any of our statistical models, for simplicity (as in Van 
Petegem et al. 2018).
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To experimentally test the effects of reduced connectivity 
on range expansions, we set up a series of one-dimensional 
artificial landscapes (Fig. 3), in which we monitored T. brassi-
cae wasps for 14 non-overlapping generations (including ini-
tially released adults, i.e. generation 0). The landscapes were 
made of closed plastic vials (5 cm diameter, 10 cm height) 
connected to each of their nearest neighbors by either three 
20 cm flexible tubes (‘reference’-level connectivity) or one 40 
cm tube (reduced connectivity) (tube internal diameter: 5 
mm). Landscapes were initially 5 patches long (including the 
release patch), to allow dispersal kernels with movements > 
1 patch, and extended as needed to ensure there were always 
at least 2 available empty patches beyond the current front. 
Each treatment was replicated 12 times (4 per genetic mix), 
for a total of 24 experimental landscapes. Landscapes were 
initiated by introducing ≈ 300 adult wasps (range: 261–324) 
in one extremity patch (x = 0), so the expansion could only 
advance in one direction in each landscape. Landscapes were 
kept under standardized conditions (23°C, 70% relative 
humidity, 16:8 L:D). Each generation then unfolded along 
the following steps:

(a) � We provided approximately 450 new eggs of Ephestia kue-
hniella per patch for wasps to lay eggs in. Ephestia kuehniella 
eggs were presented on paper strips to facilitate handling.

(b) � Adults (and old egg strips) were removed after 48 h to 
enforce non-overlapping generations and standardized 
generation times.

(c) � When parasitoid larval development was advanced 
enough to identify signs of parasitism (host eggs darken-
ing after ≈ 7 days), we temporarily removed egg strips 
from patches and assessed the presence/absence of para-
sitized eggs by eye. We photographed all patches with 
parasitized eggs for semi-automatic estimations of popula-
tion sizes. Population sizes were estimated (as % of host 
eggs parasitized) using ImageJ and the Codicount plugin 
(Abramoff et  al. 2004, Perez  et  al. 2017). We used four 
different macros each trained on a different set of pictures, 
to account for ‘observer’ effects; each macro tended to give 
consistently biased estimates, but combining them led to 
on average unbiased estimates (Supporting information). 
These population size estimates should be relatively robust 
to superparasitism, as in the vast majority of cases only one 
wasp per host survives to this stage, even when multiple 
eggs have been laid in the host (Corrigan et al. 1995). Eggs 
were then replaced in their patches until the emergence of 
the adults, when we started a new cycle from step (a).

We confirmed the experimental design led to reduced 
connectivity by comparing the average egg-laying distances 
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(in patches from release sites) between treatments at the start 
of the experiment, i.e. the only time point when the source 
patch of all egg-laying individuals was known. As dispersal 
is defined as ‘movement of individuals or propagules with 
potential consequences for gene flow across space’ (Ronce 
2007), this metric is in effect a measure of average (effec-
tive) dispersal distance. The average distance was reduced by 
≈ 20% in ‘reduced connectivity’ landscapes compared to ‘ref-
erence’ ones (Supporting information).

To determine how genetic diversity evolved during experi-
mental range expansions and whether it was influenced by 
connectivity, we kept and genotyped adult female wasps after 
their removal from the experimental landscapes. In each 
landscape, we sampled initially released individuals (i.e. gen-
eration 0; hereafter ‘origin’ wasps) as well as wasps found in 
both the release patch (‘core’ wasps) and the most advanced 
population (‘edge’ wasps) at generations 4, 8 and 12. In each 
patch × time combination, we aimed to sample about 20 
individuals; the actual number was sometimes lower espe-
cially in edge populations with fewer individuals (average ± 
SD: 18.10 ± 2.63 wasps; range: 4–28; total: 3043). Wasps 
were genotyped at 19 microsatellite loci; microsatellite char-
acteristics, as well as the DNA extraction and amplification 
protocols, are detailed in Supporting information.

This experiment complied with all relevant national and 
international laws; no ethical board recommendation or 
administrative authorization was needed to work on or sam-
ple Trichogramma brassicae.

Statistical analyses

All data (experimental and simulated) were analyzed in a 
Bayesian framework, using R ver. 4.0.3 (<www.r-project.
org>) and the brms package ver. 2.14.4 (Bürkner 2017) 
as frontends to the Stan language (RStan ver. 2.19.3, 
Carpenter  et  al. 2017, Stan Development Team 2018). 
We used (non)linear multilevel/mixed models. The model 

descriptions below are summaries aiming for clarity rather 
than completeness; formal and complete write-ups for all 
statistical models are given in the Supporting information. 
We use general-purpose ‘weakly informative’ priors based on 
McElreath (2020) for all parameters except one where there is 
strong theoretical prior knowledge (Supporting information). 
For each model, we ran four chains with enough iterations 
to ensure effective sizes were satisfactory for all fixed effect, 
random effect and distributional parameters (both bulk- and 
tail-ESS sensu Vehtari  et  al. 2020 > 1000). In addition to 
graphical posterior checks (Gabry et al. 2019, Vehtari et al. 
2020), we checked chain convergence using the improved R̂  
statistic by Vehtari et al. (2020). All credible intervals given 
in text and figures are 95% higher posterior density intervals 
(HDIs). Data handling and figure generation were mainly 
done using the various tidyverse packages (Wickham  et  al. 
2019), as well as the tidybayes (Kay 2019) and patchwork 
(Pedersen 2019) packages.

Expansion velocity (simulations and experimental data)
In the long run, the position Xt of the front (here using the 
distance between the farthest populated patch and the release 
site) is expected to increase linearly with time t, whether 
expansions are pushed or pulled (Lewis et al. 2016):

X vtt =

where v is the asymptotic expansion velocity. However, 
expansions only settle on the velocity v after a transition 
period; the above equation is likely ill-suited for estimating 
front positions when expansions are followed during their 
early stages and population sizes are low (so stochasticity is 
high). In these cases, which correspond to the present study, 
we propose to use the following model:

X v tt t=

Figure 3. A representative subset of the experimental landscapes, showing the ‘patches’ connected by 1 or 3 tubes, depending on treatment, 
as well as clusters of host eggs on paper strips for easy manipulation. Picture by Aline Bertin. Inset: Trichogramma brassicae on Ephestia 
kuehniella eggs. Picture by Géraldine Groussier, used with authorization.
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v v v v et
tv= + -( )´ - -( )[ ]

1
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where v1 is the initial velocity after one generation of expan-
sion (we use v1 as our ‘starting point’, and thus t − 1, because 
estimating velocities at t = 0 leads to convergence problems), 
and λ[v] the rate of exponential convergence to the asymptotic 
velocity v.

We fitted this model to both simulated and experimental 
front locations, assuming a lognormal distribution to account 
for the fact distances travelled are always strictly positive. We 
note that one could assume a power-law decay, rather than 
an exponential one (Panja 2004). We found however that a 
power-law model performed either much worse (simulated 
data) or similarly (experimental data) than the exponen-
tial one, and thus used the exponential decay in both cases 
(Supporting information, as well as the companion script for 
detailed model comparisons, Dahirel et al. 2020).

For experimental data, the submodels for log(v1), log(v) and 
log10(λ[v]) included fixed effects for treatment as well as random 
effects of replicate identity. For simulated data, we made three 
slight adjustments. First, we only used data from every fifth 
generation, to reduce computation time (by about an order 
of magnitude, based on preliminary tests) without significant 
impact on predictive success. Second, the submodel for v used 
logit(v) instead of log(v), as velocities were by design ≤ 1 (due 
to nearest neighbour dispersal). Finally, the model was simpli-
fied by setting v1 to 1; given the initial population size at t = 0, 
all simulated landscapes were all but guaranteed to send at least 
one individual to the next patch during the first generation, 
(Fig. 1), leading to a velocity ≈ 1 patch/generation at t = 1.

In simulations, the growth and dispersal functions are 
fully known (Fig. 2), so we were also able to directly compare 
the estimated v to their respective vF, the predicted velocity 
for a pulled wave with the same D0 and r0 (Lewis et al. 2016, 
Birzu et al. 2019):

v d rF = 2 0 0

where d0 = 0.5 D0 for a one-dimensional landscape with near-
est neighbour dispersal (Haond et al. 2018). Pulled expan-
sions are expected to have v

vF
 = 1, fully pushed expansions 

to have v
vF

>
3

2 2
, and so-called semi-pushed expansions 

to be in-between (Birzu  et  al. 2018, 2019). Because the 
formula we use for Allee effects leads to a fecundity of 0 at 
density = 0, and because growth and dispersal at density = 0 
are not meaningful anyway, we used r1 and D1 at N = 1 to 
estimate vF rather than the ‘true’ r0 and D0. Note that the 
formula we use for vF is based on the continuum assumption, 
and should not be exactly valid for discrete systems with sto-
chasticity in growth, like ours. In fact, we would expect vF < 
vF[continuous] for such systems (Hallatschek and Korolev 2009). 
However, some of us previously showed that for a simulated 
system like ours, using the simpler continuum formula for vF 

is good enough, with an expected bias of ≈ 1% for 200 ≲ K ≲ 
500 (Haond et al. 2018). This is much less than the smallest 
difference in speeds between pulled and fully pushed expan-

sions (≈ 6%, because v
vF

³
3

2 2
), and should therefore not 

affect our decision to classify a type of expansion as pushed 
or pulled.

Relationship between equilibrium population density K and 
velocity v
It has been demonstrated that, over the range of densities we 
consider in our experiments and simulations, the correlation 
between K and the asymptotic velocity v could be another 
indicator of pushed expansions (Haond et al. 2018). Pushed 
expansions would show a positive correlation between K and 
v, while pulled expansions should in theory show no correla-
tion. However, this indicator cannot be considered alone, as 
demographic stochasticity can also create such a correlation 
(Brunet and Derrida 1997, Hallatschek and Korolev 2009). 
The main difference seems to be that K–v correlations cre-
ated by demographic stochasticity alone are associated with 
v

vF
<1  (Brunet and Derrida 1997, Hallatschek and Korolev 

2009), while v
vF

>1 for pushed expansions.

In simulations, we simply compared the posterior distri-
butions of v at K = 225 and K = 450, as K was fixed.

In experiments, we used the fact that K and v spontane-
ously varied among replicates, and analyzed among-replicate 
correlations using a bivariate multilevel model. This allowed 
us to estimate correlations accurately while accounting for 
various sources of uncertainty, including observer/macro 
error for population sizes (Supporting information). We 
first started by designing univariate models. The univariate 
model for velocities v is the one described in the previous sec-
tion. For K, we used estimated population sizes in the start-
ing patch (x = 0), as this was the only patch we expected to 
be at equilibrium from the start, based on release densities 
(Morel-Journel  et  al. 2016). We initially assumed the esti-
mated percentage of hosts identified as ‘parasitized’ could be 
analyzed using a beta model, with fixed effects of experimen-
tal treatment and random effects of replicate landscape and 
computer macro, the latter to account for consistent macro-
level bias (Supporting information). However, we found 
using posterior checks (Gabry  et  al. 2019) that this model 
failed to accurately represent data distribution and variability. 
We then used instead a Student t model on logit-transformed 
percentages, with the same fixed and random effects; this per-
formed better (companion code, Dahirel et al. 2020).

Following this, we fitted a bivariate model using the two 
selected models for front position and population sizes. 
Replicate-level random effects for front parameters and for 
K were combined in the same variance–covariance matrix; 
this covariance matrix was estimated separately for each treat-
ment. This allowed us to obtain treatment-specific posteriors 
for the replicate-level correlation between K and v.
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Genetic diversity, experimental data
When expected heterozygosity (Nei 1973) H is used as a 
measure of genetic diversity, theory predicts the genetic diver-
sity both in core patches and at the edge of a range expan-
sion should decay exponentially with time t (Hallatschek and 
Nelson 2008, Birzu et al. 2018):

H H et
tg= ´

- ´[ ]
0

l

where H0 is the initial heterozygosity, and λ[g] the rate of 
decay of genetic diversity. The decay rate λ[g] is proportional 
to the inverse of the effective population size Ne, with the 
exact relationship depending on ploidy (Coop 2020). For 
experimental data, we used this equation directly in a non-
linear model to estimate whether the dynamics of genetic 
diversity varied between our two treatments and between 
core and edge patches. Multilocus expected heterozygosity 
was first calculated for each location (core/edge) × time com-
bination using microsatellite data and the adegenet package 
(Jombart 2008). Our submodel for λ[g] included fixed effects 
for treatment, location (initial release patch for ‘core’/most 
advanced patch for ‘edge’) and their interactions, as well as 
a random effect of replicate identity. The submodel for the 
initial diversity H0 only included the random effect of rep-
licate, as we did not expect differences between treatments 
beyond random fluctuations, and core/edge patches are the 
same at t = 0. Location was included in the λ[g] submodel as 
a centred dummy variable (−0.5 for ‘core’, 0.5 for ‘edge’) set 
to 0 at t = 0 as, again, core/edge patches are the same at t = 0. 
The submodels were estimated on logit(H0) and log10(λ[g]) to 
keep them within proper bounds; expected heterozygosities 
are proportions, and the decay rate λ[g] must be positive. We 
fitted the overall model on logit(Ht) using a Student t dis-
tribution, rather than on Ht using a Beta distribution (and 
a logit link). This is because the former is likely to be more 
robust to rare outliers (Kruschke 2015), like those caused by 
sampling effects before genotyping (companion script for 
detailed model comparisons, Dahirel et al. 2020).

Genetic diversity, simulated data
With simulated data, we cannot use the equation above as 
our basis to fit a model. This is because the way we simulate 
neutral genetic diversity (one locus with only two alleles in 
a haploid species) means values of Ht = 0 are very frequent 
(especially as t increases), and our previous model cannot 
handle data containing zeroes. We instead used the fact that, 
with two alleles and if a given treatment is replicated a large 
number of times, a version of λ[g] can also be recovered from 
the way among-replicate variance in allelic frequencies V (for 
either allele) changes with time (Gandhi et al. 2019):

V V e g t
= -( )- ´[ ]

max 1
l

where Vmax is the asymptotic variance reached when all rep-
licates have fixed one of the alleles, which is equal to the 

product of initial allelic frequencies. As for experimental 
data, our submodel for log10(λ[g]) included fixed effects for 
treatment, location (core/edge) and their interactions. The 
submodel for logit(Vmax) included only a constant intercept, 
as Vmax should be identical between all cases (and ≈ 0.25) but 
for random sampling fluctuations. We fitted this model on all 
data with t > 0 using a Beta distribution, as the issues raised 
for experimental data above regarding outliers did not apply 
(each data point here being the summarized outcome of 100 
independent populations).

Results

Expansion velocity v and correlation with K

In simulations, absolute asymptotic expansion velocity v 
differed between treatments. Density-dependent dispersal, 
when alone, led to higher velocities than in reference expan-
sions, while Allee effects and reduced connectivity (with or 
without density-dependent dispersal) led to slower expan-
sions (Fig. 4, Supporting information). Combining reduced 
connectivity and density-dependent dispersal led to veloci-
ties closer to the reference than reduced connectivity alone 
(Fig. 4, Supporting information). Relative velocities v

vF
 in 

the reference landscapes were very close to those expected 
for pulled expansions (1.01 and 0.99 for K = 450 and 225 
respectively, Fig. 4). The other four treatments all had higher 
velocity ratios and were firmly in the range corresponding to 
true pushed expansions based on Birzu et  al. (2018) (aver-

age velocity ratios v
vF

³
3

2 2
, Fig. 4). Expansions were 

faster when K = 450 than when K = 225 for all five treatments 
(Fig. 4, Supporting information).

In experiments, absolute estimated asymptotic veloci-
ties were virtually indistinguishable between reference and 
‘reduced connectivity’ landscapes (Fig. 5). There was no cor-
relation between replicate-level estimates of K and v in ‘refer-
ence’ landscapes (r = 0.04 [−0.47; 0.57], Fig. 6), while there 
was a positive correlation when connectivity was reduced 
(r = 0.51 [0.02; 0.92], Fig. 6). One must note however that 
credible intervals are wide, meaning we cannot say with 
certainty that the two correlations are different (Δ = 0.47 
[−0.22; 1.20]). There was also no clear evidence that mean 
population sizes in the ‘core’ starting patch differed between 
treatments, with 59.6% [44.6; 72.7] of hosts successfully 
parasitized on average in ‘reference’ landscapes versus 63.7% 
[50.4; 77.0] in ‘reduced connectivity’ landscapes (based on 
univariate model; Δ = −4.07% [−9.36; 1.39]) (Fig. 6A).

Shifts in genetic diversity

In simulations, genetic diversity declined faster, as measured 
by the decay rate λ, in edge patches than in core patches 
for all treatments (Fig. 7, Supporting information). In edge 
patches, the addition of density-dependent dispersal and 
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Allee effects led to a slower rate of diversity loss compared 
to the reference (Fig. 7, Supporting information). By con-
trast, reducing connectivity led to a faster rate of diversity 
loss (Fig. 7, Supporting information), but only when there 
was no density-dependent dispersal at the same time. Core 
patch dynamics were much less variable. However, when a 
treatment did deviate from the reference, it mostly did so in 
the same direction as in edge patches (e.g. ‘density-dependent 
dispersal’ or ‘reduced connectivity’ at K = 225, or ‘reduced 
connectivity + density dependent dispersal’ at K = 450; Fig. 7, 
Supporting information). In all five treatments and whether 
we looked at core or edge patches, genetic diversity was lost 
faster when K = 225 than when K = 450 (Fig. 7, Supporting 
information).

In the experimental landscapes, genetic diversity also 
decayed on average in all tested contexts of our experiment 
(Fig. 8), and we also found differences between edge and core 
patches and between both treatments. The rate of genetic 
diversity loss did not differ clearly between treatments in core 
patches (mean Δreference–reduced = −6.5 × 10−3, 95% CI: [−15.5 
× 10−3, 2.1 × 10−3]), but diversity was lost more rapidly in 
reference edge patches than in ‘reduced connectivity’ ones 
(mean Δreference–reduced = 18.3 × 10−3, 95% CI: [1.8 × 10−3, 
35.1 × 10−3]) (Fig. 8, Supporting information). In addition, 
while edge patches lost diversity faster than core patches in 
reference landscapes, (mean Δedge–core = 40.6 × 10−3, 95% CI: 
[27.7 × 10−3, 53.7 × 10−3]), this difference was still pres-
ent but reduced when connectivity was reduced (mean Δedge–

core = 15.8 × 10−3, 95% CI: [8.0 × 10−3, 24.3 × 10−3]) (Fig. 8).

Discussion

By combining an individual-based model and replicated 
range expansions in experimental landscapes, we showed that 
reducing connectivity can lead to more pushed expansions. 

Discrepancies between the simulation and experimental 
results, as well as comparisons between the different simula-
tion treatments, potentially shed light on the mechanisms at 
play in each context.

Expansion velocity as a quantitative and qualitative 
indicator of pushed expansions

First, our simulation results largely confirm previous theo-
retical and empirical results regarding the effects of den-
sity-dependent dispersal and Allee effects (Roques  et  al. 
2012, Gandhi  et  al. 2016, 2019, Birzu  et  al. 2018, 2019, 
Haond  et  al. 2018). We show that both mechanisms lead 
to expansions that can be classified as ‘pushed’ based on the 
velocity ratio v

vF
 (Fig. 2), i.e. advancing faster than expected 

based on dispersal and growth at low densities. We also show 
that in the reference scenario, v can be lower than vF, which is 
expected as a result of demographic stochasticity (Brunet and 
Derrida 1997, Hallatschek and Korolev 2009), although the 
difference is in our case minimal (Haond et al. 2018).

In simulations, reducing connectivity led to slower expan-
sions (lower absolute speed v) that were also pushed (higher 
velocity ratio v

vF
) (Fig. 4), confirming our main prediction. 

Although it was not presented in connectivity terms, a similar 
result was recently found using a model inspired by phage–
bacteria interactions (Hunter  et  al. 2020), where reduced 
connectivity was de facto achieved using increased densities 
of phage–resistant bacteria as a barrier. In our simulations, 
these pushed expansions are characterized by a mean disper-
sal rate independent of population density; this means they 
would likely converge to a pulled wave as K tends to infinity 
and the effects of discreteness and stochasticity become neg-
ligible. As such, they should be considered a type of ‘weakly’ 
pushed expansions (sensu Panja and van Saarloos 2002, Panja 
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2004). Nonetheless, they still advance faster than one would 
expect if they were pulled; further work is needed to under-
stand the consequences of ignoring this when attempting to 
forecast biological invasions or climate-induced range shifts 
in fragmented environments.

We also confirm that, over the range of K we studied, 
increasing the equilibrium population size K leads to faster 
range expansions, as previously shown by Haond  et  al. 
(2018) for pushed expansions. Interestingly, this K–v rela-
tionship is seen in all simulated treatments, even the refer-
ence one. This may indicate that reference dispersal rates 
are already low enough to cause weakly pushed expansions. 
More likely, given the v

vF
 ratio of reference expansions is 

≈ 1 or even < 1 (Fig. 4), this may indicate that, in their 
case, the K–v relationship stems here from demographic 
(Hallatschek and Korolev 2009), rather than dispersal 
stochasticity.

In experimental landscapes, contrary to simulations, 
expansions advanced just as fast when connectivity was 
reduced (Fig. 5). Importantly, it does not mean that reducing 
connectivity does not lead to more pushed expansions, on 

the contrary. What differentiates between pushed and pulled 
expansions is not absolute velocity v (which can be either 
higher or lower in pushed expansions, Fig. 4; Gandhi et al. 
2019), but the ratio to the ‘equivalent’ pulled wave’s velocity, 
so v

vF
. While we do not have direct quantitative information 

on the vF of our experimental landscapes, we have some partial 
and indirect qualitative information. Indeed, a reduction of 
connectivity and thus dispersal implies by definition a reduc-
tion of vF, growth being equal (Supporting information). If 
v[reference] ≃ v[reduced] (Fig. 5) and vF[reference] > vF[reduced], then it 

follows that 
v

v

v

vF F

reference

reference

reduced

reduced

[ ]

[ ]

[ ]

[ ]
< . This would mean that 

‘reduced connectivity’ expansions are indeed more pushed 
than reference expansions in our experiment. We acknowl-
edge that this conclusion hinges on growth rates being similar 
between connectivity treatments; they should be, as wasps 
came from the same stock populations, but evolution during 
expansions cannot be excluded a priori (Van Petegem et al. 
2018). Our interpretation that reduced connectivity leads to 
pushed expansions in experiments is further supported by 

reference density−dependent dispersal weak Allee effect reduced connectivity reduced + DDD

225 450 225 450 225 450 225 450 225 450

0.05

0.10

0.15

0.20

equilibrium population size K

M
ea

n 
ge

ne
tic

 d
iv

er
si

ty
 d

ec
ay

 r
at

e 
 λ

edge patches:

reference density−dependent dispersal weak Allee effect reduced connectivity reduced + DDD

225 450 225 450 225 450 225 450 225 450

0.0010

0.0015

0.0020

0.0025

0.0030

equilibrium population size K

M
ea

n 
ge

ne
tic

 d
iv

er
si

ty
 d

ec
ay

 r
at

e 
 λ

core patches:

(A)

(B)

Figure 7. Posterior distribution of the average decay rate of genetic diversity with time (λ) in simulations, depending on simulation scenario, 
equilibrium population size K and patch location (either the most advanced patch at the time of measure (edge, A), or the original release 
site (core, B)). Dots are posterior means, vertical bars 95% credible intervals. Please note that posteriors for core and edge patches are dis-
played on different scales on the y-axis, for readability.



720

the presence of a K–v correlation that is absent in the ‘refer-
ence’ treatment (Fig. 6) (Haond et al. 2018, but see simula-
tion results above). More studies are needed to confirm these 
results as both our velocities and our correlations are esti-
mated with non-negligible uncertainty, due to limited sample 
sizes. Nonetheless, our data show that it is possible, in prin-
ciple, to make qualitative assessments of expansion ‘pushi-
ness’ relative to a reference, even without knowledge of the 
underlying dispersal or growth functions. This is very inter-
esting for the study of biological invasions and range shifts in 
the wild, especially in (larger) organisms that are not easily 

reared and maintained in laboratory conditions. More work 
is needed to determine whether more quantitative insights 
can also be obtained from incomplete life-history and popu-
lation dynamics data typical of ‘natural’ study systems.

Mismatches to genetic diversity predictions show 
pushed expansions are diverse

A key theoretical prediction is that pushed expansions lose 
genetic diversity at the edge more slowly than comparable 
pulled expansions (Roques  et  al. 2012, Birzu  et  al. 2019). 

reference reduced connectivity

0 4 8 12 0 4 8 12

0.1

0.2

0.3

0.4

Generations since start

G
en

et
ic

 d
iv

er
si

ty
  H

(A)

reference reduced connectivity

core edge core edge

0.000

0.025

0.050

0.075

Location

M
ea

n 
ge

ne
tic

 d
iv

er
si

ty
 d

ec
ay

 r
at

e 
 λ

(B)

Location

core
edge
origin (x = 0, t = 0)

Figure 8. (A) Observed (points) and predicted (lines and bands) genetic diversity as a function of generations since release and landscape 
type. For predictions, lines are the posterior means and bands correspond to the 95% credible intervals. (B) Posterior distribution of the 
average genetic diversity decay rate λ as a function of landscape type and patch location (either the original release site (core) or the most 
advanced patch at the time of measure (edge)). Dots are posterior means, vertical bars 95% credible intervals.



721

While our simulations with density-dependent dispersal or 
Allee effects conform to this prediction (Fig. 7), this is not 
the case for the pushed expansions we generated by reduc-
ing connectivity alone: these expansions lost genetic diversity 
slightly faster than the pulled reference (Fig. 7) despite being 
clearly ‘pushed’ based on velocity ratios. On the one hand, 
this is unsurprising, as we should expect a negative relation-
ship between genetic diversity at expansion edges and land-
scape fragmentation (Hill et al. 2006, Mona et al. 2014); less 
connectivity means new populations are founded by fewer 
individuals, leading to stronger founder effects and drift. On 
the other hand, this creates an apparent conflict between the 
genetic and velocity-based definitions of pushed expansions, 
which were implied to be intrinsically correlated (Birzu et al. 
2018). We suggest that, although ‘weakly’ pushed expansions 
can behave like ‘classical’ pushed expansions with respect 
to speed, they are actually qualitatively different, and we 
should not expect all theoretical predictions based on ‘classi-
cal’ pushed expansions to apply to them. Further research is 
thus needed to better pinpoint where ‘classical’ and ‘weakly’ 
pushed expansions diverge or converge in their dynamics. 
Setups using natural inter-individual variation in dispersal 
(Stevens et al. 2010, Saastamoinen et al. 2018, Schreiber and 
Beckman 2020) to decouple the effects of reduced connectiv-
ity itself from those of increased dispersal variability might be 
particularly useful here.

In experimental landscapes, reducing connectivity did 
slow the decay of genetic diversity at the edge of the expan-
sion (Fig. 8). Given population genetics models predict a 
faster loss of diversity with increased fragmentation when 
expansions are not pushed (Mona et al. 2014), this result is 
strong evidence that our experiments did generate (more) 
pushed expansions, this time in the ‘classical’ sense. On the 
other hand, experiments are here in direct contradiction with 
our simulation results. This mismatch may indicate increased 
dispersal stochasticity is not the only mechanism at play here.

Based on simulation results (Fig. 7), we must first consider 
the possibility that experimental landscapes with reduced 
connectivity lose genetic diversity more slowly simply because 
they exhibit larger core populations, rather than due to a shift 
in regime from (more) pulled to (more) pushed expansions. 
There is however no clear evidence that changes in connectiv-
ity led to changes in equilibrium population sizes, so we do 
not believe this is the main driver of our genetic diversity 
results. In addition, even if there were evidence of changes in 
K, this would have led to differences in genetic diversity not 
only in edge but also in core populations, which we did not 
observe (Fig. 8).

From a dispersal ecology standpoint, one of the most obvi-
ous differences between our simulations and experiments is 
that we did not allow simulated individuals to adjust their 
dispersal-density decision rules as a function of their envi-
ronment. Dispersal decisions are multicausal, with many fac-
tors interacting to shape the benefits-cost balance of dispersal 
(Matthysen 2012). For instance, emigration by Notonecta 
undulata backswimmers is density-dependent in parasite-
free ponds, but density-independent in mite-infected ponds 

(Baines et al. 2020). In Erigone atra spiders, dispersal by rap-
pelling depends on the interaction of sex, density and local 
sex-ratios (De Meester and Bonte 2010). In Tribolium casta-
neum beetles, dispersal is less density-dependent out of lower-
quality habitat (Van Allen and Bhavsar 2014, Endriss et al. 
2019). In our context, one might wonder how reduced con-
nectivity and density-dependent dispersal might interact. 
Theory predicts that density-dependent emigration should 
be more advantageous when connectivity is reduced (more 
precisely, when costs of dispersal are higher; Travis  et  al. 
1999, Rodrigues and Johnstone 2014). In line with these 
predictions, dispersal was density-dependent in Tribolium 
castaneum metapopulations with low connectivity, density-
independent in metapopulations with high connectivity 
(Govindan et al. 2015). If we want to see whether simulations 
and experiments actually agree, these previous studies sug-
gest we should actually compare our experimental treatments 
to the ‘reference’ versus ‘reduced connectivity + density-
dependent dispersal’ pair of treatments in our simulations, 
rather than the ‘reference’ versus ‘low connectivity alone’ 
pair. Confirming this hypothesis, the ‘reduced connectiv-
ity + density-dependent dispersal’ simulated expansions are a 
better match to the experiments in that 1) while pushed, their 
absolute speed v is closer to reference expansions, and 2) they 
do lose genetic diversity slower than reference expansions. 
For this mechanism to plausibly apply to our experimental 
system, Trichogramma wasps need to be able to detect when 
density and competition increase locally, and adjust their spa-
tial behavior in response, which evidence suggests they do 
(Wajnberg et al. 2000). Importantly, the hypothesis that low 
connectivity drives changes in the density-dependence of dis-
persal itself, leading to ‘true’ and not simply ‘weakly’ pushed 
expansions, does not imply these changes result from evolu-
tion during the expansion. Indeed, in at least four out of the 
five experiments cited above, the context-specific adjustments 
to the dispersal-density function involved plastic responses 
(De Meester and Bonte 2010, Van Allen and Bhavsar 2014, 
Endriss et al. 2019, Baines et al. 2020). Further experiments 
under standardized densities and connectivity are needed to 
determine whether our results are explained by plastic adjust-
ments or evolutionary changes.

Conclusion

In this study, we demonstrated a new mechanism for gener-
ating pushed(-like) expansions (Fig. 1). We showed that the 
genetic and velocity aspects of the pushed/pulled distinction, 
which have been assumed to be tightly linked (Birzu et  al. 
2018) can be decoupled when (weakly) pushed expansions 
are caused solely by reduced connectivity. We also confirm 
pushed expansions can be detected and analyzed in systems 
with (relatively) low population sizes, even though theory 
has mostly been developed on much higher population sizes. 
This means the pushed-pulled framework may be valuable 
to help understand and better predict range expansions and 
shifts in a broad range of taxa and contexts (including under 
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natural conditions). As ecologists and evolutionary biolo-
gists are becoming more aware and more interested in the 
potential effects of pushed expansions (Williams et al. 2019, 
Miller  et  al. 2020), our results suggest we must be careful 
about which questions we ask, and whether the dimensions 
of ‘pushiness’ we collect data on are the appropriate ones. 
For instance, assuming an expansion loses less genetic diver-
sity simply because its measured velocity ratio is higher may 
not always be appropriate (Fig. 4, 7). This increased focus 
on ecological pushed expansions is nonetheless welcome, as 
our results highlight more studies are needed to better under-
stand how their impacts depend on the underlying causal 
mechanisms.

Our experiment shows that, in some cases, reducing con-
nectivity may limit the loss of genetic diversity without imped-
ing spread rates. Founder effects and low genetic diversity are 
associated with lower adaptive potential and lower chances of 
population persistence (Szűcs  et  al. 2017). Our results thus 
lead to the somewhat counterintuitive conclusion that reduc-
ing connectivity might, in some cases, help expanding species. 
This conclusion has strong implications for the management of 
invasive species and the conservation of species undergoing cli-
mate-induced range shifts, as one of the main causes of pushed 
expansions, positive density-dependent dispersal, is frequent in 
nature (Matthysen 2005, Harman et al. 2020). Finally, density-
dependent dispersal (Travis et al. 2009, Fronhofer et al. 2017) 
and Allee effects (Datta et al. 2013, Erm and Phillips 2020) 
themselves may evolve during range expansions, and the effects 
of habitat fragmentation on dispersal ecology and evolution are 
abundantly documented (Cote et al. 2017, Jacob et al. 2020). 
For these reasons, we call for more systematic eco-evolutionary 
studies of context-dependent dynamics during range expan-
sions and shifts.
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